Условные вероятности. последовательности испытаний

  • 25.01.2021

Определение 1. Событие А называется зависимым от события В, если вероятность появления события А зависит от того, произошло или не произошло событие В. Вероятность того, что произошло событие А при условии, что произошло событие В, будем обозначать и называть условной вероятностью события А при условии В.

Пример 1. В урне находится 3 белых шара и 2 черных. Из урны вынимается один шар (первое вынимание), а затем второй (второе вынимание). Событие В - появление белого шара при первом вынимании. Событие А - появление белого шара при втором вынимании.

Очевидно, что вероятность события А, если событие В произошло, будет

Вероятность события Л при условии, что событие В не произошло (при первом вынимании появился черный шар), будет

Видим, что

Теорема 1. Вероятность совмещения двух событий равняется произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло, т. е.

Доказательство. Доказательство приведем для событий, которые сводятся к схеме урн (т. е. в случае, когда применимо классическое определение вероятности).

Пусть в урне шаров, при этом белых, черных. Пусть среди белых шаров шаров с отметкой «звездочка», остальные чисто белые (рис. 408).

Из урны вынимается один шар. Какова вероятность события вынуть белый шар с отметкой «звездочка»?

Пусть В - событие, состоящее в появлении (белого шара, А - событие, состоящее в появлении шара с отметкой «звездочка». Очевидно,

Вероятность появления белого шара со «звездочкой при условии, что появился белый шар, будет

Вероятность появления белого шара со «звездочкой» есть Р (А и В). Очевидно,

Подставляя в (5) левые части выражений (2), (3) и (4), получаем

Равенство (1) доказано.

Если рассматриваемые события не укладываются в классическую - схему, то формула (1) служит для определения условной вероятности. А именно, условная вероятность события А при условии осуществления события В опрёделяется с помощью

Замечание 1. Применим последнюю формулу к выражению :

В равенствах (1) и (6) левые части равны, так как это одна и та же вероятность, следовательно, равны и правые. Поэтому можем написать равенство

Пример 2. Для случая примера 1, приведенного в начале этого параграфа, имеем По формуле (1) получаем Вероятность Р(А и В) легко вычисляется и непосредственно.

Пример 3. Вероятность изготовления годного изделия данным станком равна 0,9. Вероятность появления изделия 1-го сорта среди годных изделии есть 0,8. Определить вероятность изготовления изделия 1-го сорта данным станком.

Решение. Событие В - изготовление годного изделия данным станком, событие А - появление изделия 1-го сорта. Здесь Подставляя в формулу (1), получаем искомую вероятность

Теорема 2. Если событие А может осуществиться только при выполнении одного из событий которые образуют полную группу несовместных событий, то вероятность события А вычисляется по формуле

Формулд (8) называется формулой полной вероятности. Доказательство. Событие А может произойти при выполнении любого из совмещенных событий

Следовательно, по теореме о сложение вероятностей получаем

Заменяя слагаемые правой части по формуле (1), получим равенство (8).

Пример 4. По цели произведено три последовательных выстрела. Вероятность попадания при первом выстреле при втором при третьем При одном попадании вероятность поражения цели при двух попаданиях , при трех попаданиях Определить вероятность пфаженйя цели при трех выстрелах (событие А).

Условной вероятностью события A при выполнении события B называется отношение Здесь предполагается, что .

В качестве разумного обоснования этого определения отметим, что при наступлении события B оно начинает играть роль достоверного события, поэтому надо потребовать, чтобы . Роль события A играет AB, поэтому должна быть пропорциональна . (Из определения следует, что коэффициент пропорциональности равен .)

Теперь введем понятие независимости событий.

Это означает: оттого что произошло событие B , вероятность события A не изменилась.

С учетом определения условной вероятности, это определение сведется к соотношению . Здесь уже нет необходимости требовать выполнения условия . Таким образом, приходим к окончательному определению.

События A и B называются независимыми, если P (AB ) = P (A )P (B ).

Последнее соотношение обычно и принимают за определение независимости двух событий.

Несколько событий называются независимыми в совокупности, если подобные соотношения выполняются для любого подмножества рассматриваемых событий. Так, например, три события A, B и C называются независимыми в совокупности, если выполняются следующие четыре соотношения:

Приведем ряд задач на условную вероятность и независимость событий и их решения.

Задача 21. Из полной колоды из 36 карт вытаскивают одну карту. Событие A – карта красная, B – карта туз. Будут ли они независимы?

Решение. Проведя вычисления согласно классическому определению вероятности, получим, что . Это означает, что события A и B независимы.

Задача 22 . Решить ту же задачу для колоды, из которой удалена пиковая дама.

Решение . . Независимости нет.

Задача 23. Двое поочередно бросают монету. Выигрывает тот, у которого первым выпадет герб. Найти вероятности выигрыша для обоих игроков.

Решение. Можно считать, что элементарные события – это конечные последовательности вида (0, 0, 1,…, 0, 1). Для последовательности длины соответствующее элементарное событие имеет вероятность Игрок, начинающий бросать монету первым, выигрывает, если реализуется элементарное событие , состоящее из нечетного числа нулей и единиц. Поэтому вероятность его выигрыша равна

Выигрыш второго игрока соответствует четному числу нулей и единиц. Он равен

Из решения следует, что игра заканчивается за конечное время с вероятностью 1 (так как ).

Задача 24. Для того чтобы разрушить мост, нужно попадание не менее 2 бомб. Сбросили 3 бомбы. Вероятности попадания бомб равны соответственно 0, 1; 0, 3; 0, 4. Найти вероятность разрушения моста.

Решение. Пусть события A, B, C состоят в попадании 1-й, 2-й, 3-й бомбы соответственно. Тогда разрушение моста происходит только при реализации события В силу того что слагаемые в этой формуле попарно несовместны, а сомножители в слагаемых независимы, искомая вероятность равна

0,1∙0,3∙0,4 + 0,1∙0,3∙0,6 + 0,1∙0,7∙0,4 + 0,9∙0,3∙0,4 = 0,166.

Задача 25. К одному и тому же причалу должны пришвартоваться два грузовых судна. Известно, что каждое из них может с равной вероятностью подойти в любой момент фиксированных суток и должно разгружаться 8 ч. Найти вероятность того, что судну, пришедшему вторым, не придется дожидаться, пока закончит разгрузку первое судно.

Решение. Будем время измерять в сутках и долях суток. Тогдаэлементарные события – это пары чисел , заполняющие единичный квадрат, где x – время прихода первого судна, y – время прихода второго судна. Все точки квадрата равновероятны. Это означает, что вероятность любого события (т. е. множества из единичного квадрата) равна площади области, соответствующей этому событию. Событие A состоит из точек единичного квадрата, для которых выполняется неравенство . Это неравенство соответствует тому, что судно, пришедшее первым, успеет разгрузиться к моменту прихода второго судна. Множество этих точек образует два прямоугольных равнобедренных треугольника со стороной 2/3. Суммарная площадь этих треугольников равна 4/9. Таким образом, .

Задача 26. На экзамене по теории вероятностей было 34билета. Студент дважды извлекает по одному билету из предложенных билетов (не возвращая их). Студент подготовился лишь по 30-ти билетам? Какова вероятность того, что он сдаст экзамен, выбрав в первый раз «неудачный » билет?

Решение. Случайный выбор состоит в том, что два раза подряд извлекают по одному билету, причем вытянутый в первый раз билет назад не возвращается. Пусть событие В состоит в том, что первым вынут «неудачный» билет, а событие А состоит в том, что вторым вынут «удачный » билет. Очевидно, что события А и В зависимы, так как извлеченный в первый раз билет не возвращается в число всех билетов. Требуется найти вероятность события АВ .

По формуле условной вероятности ; ; , поэтому .

Рассмотрим события A и B , связанные с одним и тем же опытом. Пусть из каких-то источников стало известно, что событие B наступило, но неизвестно, какой конкретно из элементарных исходов, составляющих событие B , произошел. Что можно сказать в этом случае о вероятности события A ?

Вероятность события A , вычисленную в предположении, что событие B произошло, принято называть условной вероятностью и обозначать P(A|B) .

Условную вероятность P(A|B) события A при условии события B в рамках классической схемы вероятности естественно определить как отношение N AB исходов, благоприятствующих совместному осуществлению событий A и B , к числу N B исходов, благоприятствующих событию B , то есть

Если поделить числитель и знаменатель этого выражения на общее число N элементарных исходов, то получим

Определение . Условной вероятностью события A при условии наступления события B называют отношение вероятности пересечения событий A и B к вероятности события B :

При этом предполагают, что P(B) ≠ 0 .

Теорема . Условная вероятность P(A|B) обладает всеми свойствами безусловной вероятности P(A) .

Смысл этой теоремы заключается в том, что условная вероятность представляет собой безусловную вероятность, заданную на новом пространстве Ω 1 элементарных исходов, совпадающем с событием B .

Пример . Из урны, в которой a=7 белых и b=3 черных шаров, наугад без возвращения извлекают два шара. Пусть событие A 1 состоит в том, что первый извлеченный шар является белым, а A 2 - белым является второй шар. Требуется найти P(A 2 |A 1) .

Способ 1. . По определению условной вероятности

Способ 2. . Перейдем к новому пространству элементарных исходов Ω 1 . Так как событие A 1 произошло, то это означает, что в новом пространстве элементарных исходов всего равновозможных исходов N Ω 1 =a+b-1=9 , а событию A 2 благоприятствует при этом N A 2 =a-1=6 исходов. Следовательно,

Теорема [умножения вероятностей] . Пусть событие A=A 1 A 2 …A n и P(A)>0 . Тогда справедливо равенство:

P(A) = P(A 1) P(A 2 |A 1) P(A 3 |A 1 A 2) … P(A n |A 1 A 2 …A n-1) .

Замечание . Из свойства коммутативности пересечения можно писать

P(A 1 A 2) = P(A 1) P(A 2 |A 1)

P(A 1 A 2) = P(A 2) P(A 1 |A 2) .

Пример . На 7 карточках написаны буквы, образующие слово «СОЛОВЕЙ». Карточки перемешивают и из них наугад последовательно извлекают и выкладывают слева направо три карточки. Найти вероятность того, что получится слово «ВОЛ» (событие A ).

Пусть событие A 1 - на первой карточке написана буква «В», A 2 - на второй карточке написана буква «О», A 2 - на третьей карточке - буква «Л». Тогда событие A - пересечение событий A 1 , A 2 , A 3 . Следовательно,

P(A) = P(A 1 A 2 A 3) = P(A 1) P(A 2 |A 1) P(A 3 |A 1 A 2) .

P(A 1)=1/7 ; если событие A 1 произошло, то на оставшихся 6 карточках «О» встречается два раза, значит P(A 2 |A 1)=2/6=1/3 . Аналогично, P(A 3 |A 1)=2/6=1/3 . Следовательно,

Определение . События A и B , имеющие ненулевую вероятность, называют независимыми, если условная вероятность A при условии B совпадает с безусловной вероятностью A или если условная вероятность B при условии A совпадает с безусловной вероятностью B , то есть

P(A|B) = P(A) или P(B|A) = P(B) ,

в противном случае события A и B называют зависимыми.

Теорема . События A и B , имеющие ненулевую вероятность, являются независимыми тогда и только тогда, когда

P(AB) = P(A) P(B) .

Таким образом, можно дать эквивалентное определение:

Определение . События A и B называют независимыми, если P(AB) = P(A) P(B) .

Пример . Из колоды карт, содержащей n=36 карт, наугад извлекают одну карту. Обозначим через A событие, соответствующее тому, что извлеченная карта будет пиковой, а B - событие, соответствующее появлению «дамы». Определим являются ли зависимыми события A и B .

P(A)=9/36=1/4 , P(B)=4/36=19 , P(AB)=1/36 , . Следовательно, события A и B независимы. Аналогично, .

Фактически формулы (1) и (2) это краткая запись условной вероятности на основе таблицы сопряженности признаков. Вернемся к примеру, рассмотренному (рис. 1). Предположим, что нам стало известно, будто некая семья собирается купить широкоэкранный телевизор. Какова вероятность того, что эта семья действительно купит такой телевизор?

Рис. 1. Поведение покупателей широкоэкранных телевизоров

В данном случае нам необходимо вычислить условную вероятность Р (покупка совершена | покупка планировалась). Поскольку нам известно, что семья планирует покупку, выборочное пространство состоит не из всех 1000 семей, а только из тех, которые планируют покупку широкоэкранного телевизора. Из 250 таких семей 200 действительно купили этот телевизор. Следовательно, вероятность того, что семья действительно купит широкоэкранный телевизор, если она это запланировала, можно вычислить по следующей формуле:

Р (покупка совершена | покупка планировалась) = количество семей, планировавших и купивших широкоэкранный телевизор / количество семей, планировавших купить широкоэкранный телевизор = 200 / 250 = 0,8

Этот же результат дает формула (2):

где событие А заключается в том, что семья планирует покупку широкоформатного телевизора, а событие В - в том, что она его действительно купит. Подставляя в формулу реальные данные, получаем:

Дерево решений

На рис. 1 семьи разделены на четыре категории: планировавшие покупку широкоэкранного телевизора и не планировавшие, а также купившие такой телевизор и не купившие. Аналогичную классификацию можно выполнить с помощью дерева решений (рис. 2). Дерево, изображенное на рис. 2, имеет две ветви, соответствующие семьям, которые планировали приобрести широкоэкранный телевизор, и семьям, которые не делали этого. Каждая из этих ветвей разделяется на две дополнительные ветви, соответствующие семьям, купившим и не купившим широкоэкранный телевизор. Вероятности, записанные на концах двух основных ветвей, являются безусловными вероятностями событий А и А’ . Вероятности, записанные на концах четырех дополнительных ветвей, являются условными вероятностями каждой комбинации событий А и В . Условные вероятности вычисляются путем деления совместной вероятности событий на соответствующую безусловную вероятность каждого из них.

Рис. 2. Дерево решений

Например, чтобы вычислить вероятность того, что семья купит широкоэкранный телевизор, если она запланировала сделать это, следует определить вероятность события покупка запланирована и совершена , а затем поделить его на вероятность события покупка запланирована . Перемещаясь по дереву решения, изображенному на рис. 2, получаем следующий (аналогичный предыдущему) ответ:

Статистическая независимость

В примере с покупкой широкоэкранного телевизора вероятность того, что случайно выбранная семья приобрела широкоэкранный телевизор при условии, что она планировала это сделать, равна 200/250 = 0,8. Напомним, что безусловная вероятность того, что случайно выбранная семья приобрела широкоэкранный телевизор, равна 300/1000 = 0,3. Отсюда следует очень важный вывод. Априорная информация о том, что семья планировала покупку, влияет на вероятность самой покупки. Иначе говоря, эти два события зависят друг от друга. В противоположность этому примеру, существуют статистически независимые события, вероятности которых не зависят друг от друга. Статистическая независимость выражается тождеством: Р(А|В) = Р(А) , где Р(А|В) - вероятность события А при условии, что произошло событие В , Р(А) - безусловная вероятность события А.

Обратите внимание на то, что события А и В Р(А|В) = Р(А) . Если в таблице сопряженности признаков, имеющей размер 2×2, это условие выполняется хотя бы для одной комбинации событий А и В , оно будет справедливым и для любой другой комбинации. В нашем примере события покупка запланирована и покупка совершена не являются статистически независимыми, поскольку информация об одном событии влияет на вероятность другого.

Рассмотрим пример, в котором показано, как проверить статистическую независимость двух событий. Спросим у 300 семей, купивших широкоформатный телевизор, довольны ли они своей покупкой (рис. 3). Определите, связаны ли между собой степень удовлетворенности покупкой и тип телевизора.

Рис. 3. Данные, характеризующие степень удовлетворенности покупателей широкоэкранных телевизоров

Судя по этим данным,

В то же время,

Р (покупатель удовлетворен) = 240 / 300 = 0,80

Следовательно, вероятность того, что покупатель удовлетворен покупкой, и того, что семья купила HDTV-телевизор, равны между собой, и эти события являются статистически независимыми, поскольку никак не связаны между собой.

Правило умножения вероятностей

Формула для вычисления условной вероятности позволяет определить вероятность совместного события А и В . Разрешив формулу (1)

относительно совместной вероятности Р(А и В) , получаем общее, правило умножения вероятностей. Вероятность события А и В равна вероятности события А при условии, что наступило событие В В :

(3) Р(А и В) = Р(А|В) * Р(В)

Рассмотрим в качестве примера 80 семей, купивших широкоэкранный HDTV-телевизор (рис. 3). В таблице указано, что 64 семьи удовлетворены покупкой и 16 - нет. Предположим, что среди них случайным образом выбираются две семьи. Определите вероятность, что оба покупателя окажутся довольными. Используя формулу (3), получаем:

Р(А и В) = Р(А|В) * Р(В)

где событие А заключается в том, что вторая семья удовлетворена своей покупкой, а событие В - в том, что первая семья удовлетворена своей покупкой. Вероятность того, что первая семья удовлетворена своей покупкой, равна 64/80. Однако вероятность того, что вторая семья также удовлетворена своей покупкой, зависит от ответа первой семьи. Если первая семья после опроса не возвращается в выборку (выбор без возвращения), количество респондентов снижается до 79. Если первая семья оказалась удовлетворенной своей покупкой, вероятность того, что вторая семья также будет довольна, равна 63/79, поскольку в выборке осталось только 63 семьи, удовлетворенные своим приобретением. Таким образом, подставляя в формулу (3) конкретные данные, получим следующий ответ:

Р(А и В) = (63/79)(64/80) = 0,638.

Следовательно, вероятность того, что обе семьи довольны своими покупками, равна 63,8%.

Предположим, что после опроса первая семья возвращается в выборку. Определите вероятность того, что обе семьи окажутся довольными своей покупкой. В этом случае вероятности того, что обе семьи удовлетворены своей покупкой одинаковы, и равны 64/80. Следовательно, Р(А и В) = (64/80)(64/80) = 0,64. Таким образом, вероятность того, что обе семьи довольны своими покупками, равна 64,0%. Этот пример показывает, что выбор второй семьи не зависит от выбора первой. Таким образом, заменяя в формуле (3) условную вероятность Р(А|В) вероятностью Р(А) , мы получаем формулу умножения вероятностей независимых событий.

Правило умножения вероятностей независимых событий. Если события А и В являются статистически независимыми, вероятность события А и В равна вероятности события А , умноженной на вероятность события В .

(4) Р(А и В) = Р(А)Р(В)

Если это правило выполняется для событий А и В , значит, они являются статистически независимыми. Таким образом, существуют два способа определить статистическую независимость двух событий:

  1. События А и В являются статистически независимыми друг от друга тогда и только тогда, когда Р(А|В) = Р(А) .
  2. События А и B являются статистически независимыми друг от друга тогда и только тогда, когда Р(А и В) = Р(А)Р(В) .

Если в таблице сопряженности признаков, имеющей размер 2×2, одно из этих условий выполняется хотя бы для одной комбинации событий А и B , оно будет справедливым и для любой другой комбинации.

Безусловная вероятность элементарного события

(5) Р(А) = P(A|B 1)Р(B 1) + P(A|B 2)Р(B 2) + … + P(A|B k)Р(B k)

где события B 1 , B 2 , … B k являются взаимоисключающими и исчерпывающими.

Проиллюстрируем применение этой формулы на примере рис.1. Используя формулу (5), получаем:

Р(А) = P(A|B 1)Р(B 1) + P(A|B 2)Р(B 2)

где Р(А) - вероятность того, что покупка планировалась, Р(В 1) - вероятность того, что покупка совершена, Р(В 2) - вероятность того, что покупка не совершена.

ТЕОРЕМА БАЙЕСА

Условная вероятность события учитывает информацию о том, что произошло некое другое событие. Этот подход можно использовать как для уточнения вероятности с учетом вновь поступившей информации, так и для вычисления вероятности, что наблюдаемый эффект является следствием некоей конкретной причины. Процедура уточнения этих вероятностей называется теоремой Байеса. Впервые она была разработана Томасом Байесом в 18 веке.

Предположим, что компания, упомянутая выше, исследует рынок сбыта новой модели телевизора. В прошлом 40% телевизоров, созданных компанией, пользовались успехом, а 60% моделей признания не получили. Прежде чем объявить о выпуске новой модели, специалисты по маркетингу тщательно исследуют рынок и фиксируют спрос. В прошлом успех 80% моделей, получивших признание, прогнозировался заранее, в то же время 30% благоприятных прогнозов оказались неверными. Для новой модели отдел маркетинга дал благоприятный прогноз. Какова вероятность того, что новая модель телевизора будет пользоваться спросом?

Теорему Байеса можно вывести из определений условной вероятности (1) и (2). Чтобы вычислить вероятность Р(В|А), возьмем формулу (2):

и подставим вместо Р(А и В) значение из формулы (3):

Р(А и В) = Р(А|В) * Р(В)

Подставляя вместо Р(А) формулу (5), получаем теорему Байеса:

где события B 1 , В 2 , … В k являются взаимоисключающими и исчерпывающими.

Введем следующие обозначения: событие S - телевизор пользуется спросом , событие S’ - телевизор не пользуется спросом , событие F - благоприятный прогноз , событие F’ - неблагоприятный прогноз . Допустим, что P(S) = 0,4, P(S’) = 0,6, P(F|S) = 0,8, P(F|S’) = 0,3. Применяя теорему Байеса получаем:

Вероятность спроса на новую модель телевизора при условии благоприятного прогноза равна 0,64. Таким образом, вероятность отсутствия спроса при условии благоприятного прогноза равна 1–0,64=0,36. Процесс вычислений представлен на рис. 4.

Рис. 4. (а) Вычисления по формуле Байеса для оценки вероятности спроса телевизоров; (б) Дерево решения при исследовании спроса на новую модель телевизора

Рассмотрим пример применения теоремы Байеса для медицинской диагностики. Вероятность того, что человек страдает от определенного заболевания, равна 0,03. Медицинский тест позволяет проверить, так ли это. Если человек действительно болен, вероятность точного диагноза (утверждающего, что человек болен, когда он действительно болен) равна 0,9. Если человек здоров, вероятность ложноположительного диагноза (утверждающего, что человек болен, когда он здоров) равна 0,02. Допустим, что медицинский тест дал положительный результат. Какова вероятность того, что человек действительно болен? Какова вероятность точного диагноза?

Введем следующие обозначения: событие D - человек болен , событие D’ - человек здоров , событие Т - диагноз положительный , событие Т’ - диагноз отрицательный . Из условия задачи следует, что Р(D) = 0,03, P(D’) = 0,97, Р(T|D) = 0,90, P(T|D’) = 0,02. Применяя формулу (6), получаем:

Вероятность того, что при положительном диагнозе человек действительно болен, равна 0,582 (см. также рис. 5). Обратите внимание на то, что знаменатель формулы Байеса равен вероятности положительного диагноза, т.е. 0,0464.

Формула полной вероятности позволяет найти вероятность события A , которое может наступить только с каждым из n исключающих друг друга событий , образующих полную систему, если известны их вероятности , а условные вероятности события A относительно каждого из событий системы равны .

События также называются гипотезами, они являются исключающими друг друга. Поэтому в литературе можно также встретить их обозначение не буквой B , а буквой H (hypothesis).

Для решения задач с такими условиями необходимо рассмотреть 3, 4, 5 или в общем случае n возможностей наступления события A - с каждым событий .

По теоремам сложения и умножения вероятностей получаем сумму произведений вероятности каждого из событий системы на условную вероятность события A относительно каждого из событий системы. То есть, вероятность события A может быть вычислена по формуле

или в общем виде

,

которая и называется формулой полной вероятности .

Формула полной вероятности: примеры решения задач

Пример 1. Имеются три одинаковых на вид урны: в первой 2 белых шара и 3 чёрных, во второй - 4 белых и один чёрный, в третьей - три белых шара. Некто подходит наугад к одной из урн и вынимает из неё один шар. Пользуясь формулой полной вероятности , найти вероятность того, что этот шар будет белым.

Решение. Событие A - появление белого шара. Выдвигаем три гипотезы:

Выбрана первая урна;

Выбрана вторая урна;

Выбрана третья урна.

Условные вероятности события A относительно каждой из гипотез:

, , .

Применяем формулу полной вероятности, в результате - требуемая вероятность:

.

Пример 2. На первом заводе из каждых 100 лампочек производится в среднем 90 стандартных, на втором - 95, на третьем - 85, а продукция этих заводов составляет соответственно 50%, 30% и 20% всех электролампочек, поставляемых в магазины некоторого района. Найти вероятность приобретения стандартной электролампочки.

Решение. Обозначим вероятность приобретения стандартной электролампочки через A , а события, заключающиеся в том, что приобретённая лампочка изготовлена соответственно на первом, втором и третьем заводах, через . По условию известны вероятности этих событий: , , и условные вероятности события A относительно каждого из них: , , . Это вероятности приобретения стандартной лампочки при условии её изготовления соответственно на первом, втором, третьем заводах.

Событие A наступит, если произойдут или событие K - лампочка изготовлена на первом заводе и стандартна, или событие L - лампочка изготовлена на втором заводе и стандартна, или событие M - лампочка изготовлена на третьем заводе и стандартна. Других возможностей наступления события A нет. Следовательно, событие A является суммой событий K , L и M , которые являются несовместимыми. Применяя теорему сложения вероятностей, представим вероятность события A в виде

а по теореме умножения вероятностей получим

то есть, частный случай формулы полной вероятности .

Подставив в левую часть формулы значения вероятностей, получаем вероятность события A :

Пример 3. Производится посадка самолёта на аэродром. Если позволяет погода, лётчик сажает самолёт, пользуясь, помимо приборов, ещё и визуальным наблюдением. В этом случае вероятность благополучной посадки равна . Если аэродром затянут низкой облачностью, то лётчик сажает самолёт, ориентируясь только по приборам. В этом случае вероятность благополучной посадки равна ; . Приборы, обеспечивающие слепую посадку, имеют надёжность (вероятность безотказной работы) P . При наличии низкой облачности и отказавших приборах слепой посадки вероятность благополучной посадки равна ; . Статистика показывает, что в k % случаев посадки аэродром затянут низкой облачностью. Найти полную вероятность события A - благополучной посадки самолёта.

Решение. Гипотезы:

Низкой облачности нет;

Низкая облачность есть.

Вероятности этих гипотез (событий):

;

Условная вероятность .

Условную вероятность снова найдём по формуле полной вероятности с гипотезами

Приборы слепой посадки действуют;

Приборы слепой посадки отказали.

Вероятности этих гипотез:

По формуле полной вероятности

Пример 4. Прибор может работать в двух режимах: нормальном и ненормальном. Нормальный режим наблюдается в 80% всех случаев работы прибора, а ненормальный - в 20% случаев. Вероятность выхода прибора из строя за определённое время t равна 0,1; в ненормальном 0,7. Найти полную вероятность выхода прибора из строя за время t .

Решение. Вновь обозначаем вероятность выхода прибора из строя через A . Итак, относительно работы прибора в каждом режиме (события ) по условию известны вероятности: для нормального режима это 80% (), для ненормального - 20% (). Вероятность события A (то есть, выхода прибора из строя) в зависимости от первого события (нормального режима) равна 0,1 (); в зависимости от второго события (ненормального режима) - 0,7 (). Подставляем эти значения в формулу полной вероятности (то есть, сумму произведений вероятности каждого из событий системы на условную вероятность события A относительно каждого из событий системы) и перед нами - требуемый результат.