Классификация карт применяемых в авиации мчс. Классификация авиационных карт

  • 30.08.2021

В России ликвидацией последствий локальных и стихийных бедствий занимается федеральное министерство, которое сокращенно называется МЧС. Это самая важная в стране Она действует совместно с другими органами быстрого реагирования. В ее состав входят муниципальные пожарные и спасательные службы. МЧС осуществляет единое руководство аварийными ведомствами городов, областей и страны в целом. Всего министерство проводит более 25 % федеральных проверок.

Деятельность МЧС

Федеральная служба обеспечивает контроль над всеми спасательными органами страны. Первоначально на вызов направляются муниципальные ведомства. Если местными силами локализировать опасность не удалось, в дело вступают региональные службы. Республиканские ведомства подключаются только при острой необходимости.

Спасатели МЧС прибывают на место только четвертыми. Первыми на аварийную ситуацию должны реагировать такие местные органы, как полиция, скорая помощь и пожарные. И только после того, как этими службами будет установлена необходимость привлечения дополнительных сил для ликвидации опасности, прибывают сотрудники МЧС. Время их реагирования составляет порядка 4 часов.

При масштабной катастрофе к ее ликвидации подключается авиация федеральной службы. Однако перед тем как вызвать вертолет МЧС, необходимо оценить уровень опасности. Возможно, аварию удастся ликвидировать городским службам. Сотрудников МЧС вызывают только в редких случаях, когда ситуация выходит из-под контроля.

В министерстве работают люди, прошедшие военную подготовку в армии, и пожарные. При сдаче экзаменов у спасателей проверяется не только физическая готовность и умственные способности, но и психологическая устойчивость. Всего в органах МЧС работает более 7200 человек, в противопожарной службе - около 150 тыс. сотрудников.

Спасательная авиация

Воздушные силы МЧС являются гордостью всей страны. Авиация федеральной службы была образована в мае 1995 года. Инициатором выступило Правительство РФ. За время существования авиация оправдала себя неоднократно. Она приняла участие в тысячах спасательных миссий на территории России и за ее пределами.

Главной базой МЧС считается аэродром «Раменское». Однако силы авиации равномерно распределены по всем регионам страны. На сегодняшний день в распоряжении министерства более 50 воздушных судов. Самолетный парк представлен такими аппаратами, как Ил-62М, Ан-74, Як-42Д, Бе-200ЧС и многими другими многофункциональными моделями. Также на балансе находятся спасательные БК-117, Ми-8 и Бо-105. Под медицинские нужды были модернизированы Ка-32. Из многоцелевых тяжеловесов стоит выделить Ми-26Т.

Отцом российской спасательной авиации считается военный пилот и инженер Рафаиль Закиров. Именно он стоял у истоков разработки технологий пожаротушения для таких вертолетов, как Ми-26 и Ка-32. Для эффективности были использованы водосливные устройства серии ВСУ-15. Также Закиров разработал концепцию борьбы с разливом нефти. Для этого было сконструировано устройство ВОП-3. Позже инженеру удалось добиться удивительных результатов в тушении техногенных пожаров. Эффективность была достигнута благодаря изобретению Закирова - водосливного аппарата ВАП-2.

Вертолет Ми-8

Вертолет пригоден как для разведки, так и для огневой поддержки сухопутных войск. Есть возможность крепления противотанковых бомб.

Разработкой БК-117 в 1970-х годах совместно начали заниматься ведущие японские и немецкие компании. Производство и экспорт были налажены только к началу 1980-х.

Вертолетом управляет один пилот. В грузовом отсеке помещается 9 человек. Грузоподъемность варьируется в пределах 1700 кг. Мощность обоих двигателей - 1500 л. с.

Максимальная скорость доходит до 250 км/ч.

Глава 2 КАРТЫ, ПРИМЕНЯЕМЫЕ В АВИАЦИИ

1. Назначение карт

В авиации карты используются как при подготовке к полету, так и в процессе полета. При подготовке к полету карта необходима в целях:

1) прокладки и изучения маршрута полёта;

2) измерения путевых углов и расстояний между пунктами маршрута;

3) определения географических координат пунктов;

4) нанесения точек расположения радиотехнических средств, обеспечивающих полет;

5) получения данных о магнитном склонении района полета;

6) изучения рельефа местности и определения высоты гор и отдельных точек местности.

Еще в большей мере карта необходима в полете. В этом слу­чае она применяется в целях:

1) ведения визуальной и радиолокационной ориентировки;

2) контроля пути и прокладки линий положения самолета;

3) определения навигационных элементов полета.

Карты нужны также службе движения для руководства полета­ми и контроля за правильностью их выполнения.

В авиации карта является основным пособием для самолето­вождения. Без нее не может выполняться ни один полет.

В первые годы существования авиации для самолетовождения использовались обычные топографические карты. Пользоваться ими было неудобно.

По мере развития авиации и средств самолетовождения возник­ла необходимость в издании специальных авиационных карт, отве­чающих требованиям самолетовождения.

Большой вклад в разработку новых способов построения карт внесли советские ученые В. В. Каврайский, Ф. Н. Красовский, М. Д. Соловьев, Н. А. Урмаев и др.

В настоящее время для нужд авиации издаются различные кар­ты, которые отличаются большой точностью и совершенством вы­полнения.

2. План и карта

Правильно изобразить поверхность Земли можно только на глобусе, который представляет собой земной шар в уменьшенном виде. Но глобусы, несмотря на указанное преимущество, неудоб­ны для практического использования в авиации. На небольших гло­бусах нельзя поместить все сведения, необходимые для самолето­вождения. Большие глобусы неудобны в обращении. Поэтому под­робное изображение земной поверхности делается на плоскости (обычно на листах бумаги) в виде плана или карты.

Планом называется уменьшенное изображение на плоскости в крупном масштабе небольшого участка земной поверхности. План составляется без учета кривизны Земли. Небольшие участки земной поверхности радиусом 10-15 км можно практически при­нимать за плоскость и изображать на бумаге все элементы мест­ности без искажений.

Плану присущи следующие свойства:

1) отсутствие градусной сетки меридианов и параллелей;

2) равномасштабность во всех направлениях;

3) большая подробность деталей местности и передача очерта­ний предметов без искажений.

Планы составляются в масштабе 200 м в 1 см и крупнее. На них помещаются объекты, в изображении которых нужна большая под­робность.

Большие участки земной поверхности изображаются на карте.

Картой называется условное изображение всей поверхности Земли или отдельных ее частей в уменьшенном виде на плоскости с учетом шарообразности Земли. Как видно из определения, план и карта - это прежде всего уменьшенные изображения того или иного участка земной поверхности. Уменьшение зависит от приня­того для плана или карты масштаба.

3. Масштаб карты

Масштабом карты называется отношение длины линии, взятой на карте, к действительной длине той же линии на местно­сти. Он показывает степень уменьшения линий на карте относи­тельно соответствующих им линий на местности. Масштаб бывает численный и линейный.

Численный масштаб выражается дробью, у которой чис­литель- единица, а знаменатель - число, показывающее, во сколь­ко раз действительные расстояния на Земле уменьшены при нанесении их на

Рис. 2.1. Линейный масштаб

карту. Например 1: 1 000000, 1: 500 000. Чем меньше знаменатель численного масштаба, тем более крупным будет масш­таб данной карты.

Линейный масштаб представляет собой прямую линию, разделенную на равные отрезки, обозначенные числами, показыва­ющими, каким расстояниям на местности соответствуют эти отрез­ки (рис. 2.1). Линейный масштаб-это графическое выражение численного масштаба. Отрезок линии, положенный в основу линей­ного масштаба, называется основанием масштаба. Обычно основанием масштаба для удобства измерений на карте берется отрезок длиной в 1 см. Расстояние на местности, соответствующее основанию масштаба, называется величиной масштаба . На­пример, величина масштаба карты 1: 1 000000 равна 10 км.

Ввиду того, что шарообразную поверхность Земли нельзя изо­бразить на плоскости без искажений, масштаб не является постоян­ной величиной для всей карты. Принято различать главный и ча­стный масштабы.

Главным масштабом карты называется степень общего уменьшения земного шара до определенных размеров глобуса, с которого земная поверхность переносится на плоскость. Главный масштаб позволяет судить об уменьшении длин отрезков при пе­ренесении их с земного шара на глобус.

Масштаб в данной точке карты по данному направлению назы­вается частным. Если главный масштаб принять равным едини­це, то частные масштабы могут быть больше и меньше единицы.

На авиационных картах есть линии нулевых искажений, где со­храняется главный масштаб. На листах карт (на южной рамке) указывается главный масштаб.

4. Сущность картографических проекций и их классификация

Способ изображения земной поверхности на плоскости назы­вается картографической проекцией . Существует много способов изображения земной поверхности на плоскости.

Сущность любой картографической проекции состоит в том, что поверхность земного шара переносится сначала на глобус опреде­ленного размера, а затем с глобуса по намеченному способу на плоскость.

При переносе поверхности Земли с глобуса на плоскость при­ходится в одних местах растягивать изображения, а в других сжи­мать, т. е. допускать искажения. Каждая проекция имеет определенную степень искажения длин, направлений и площадей и опре­деленный вид сетки меридианов и параллелей. Выбор проекции для построения карты зависит от того, каким требованиям должна отвечать данная карта. Все существующие проекции условились подразделять по двум признакам: по характеру искажений и по способу построения картографической сетки.

По характеру искажений картографические проекции делятся на следующие группы:

1. Равноугольные . Эти проекции не имеют искажения уг­лов и сохраняют подобие небольших фигур. В равноугольных про­екциях угол, измеренный на карте, равен углу между этими же направлениями на поверхности Земли. Небольшие фигуры, изо­браженные на карте, подобны соответствующим фигурам на мест­ности.

Картами в равноугольных проекциях широко пользуются в авиации, так как для самолетовождения важно точное измерение направления (путевого угла, пеленга и т. п.).

2. Равнопромежуточные . В этих проекциях расстояние по меридиану или по параллели изображается без искажения.

3. Равновеликие . В этих проекциях сохраняется постоянст­во отношения площади изображения фигуры на карте к площади этой же фигуры на земной поверхности. Равенства углов и подобия фигур в этих проекциях нет.

4. Произвольные. Эти проекции не обладают ни одним из указанных выше свойств, но нужны для упрощения решения некоторых практических задач.

В основе любой картографической проекции лежит тот или иной способ изображения на плоскости сетки меридианов и парал­лелей.

Существует несколько способов изображения градусной сетки на плоскости. В одних случаях сетка меридианов и параллелей проектируется с глобуса на боковую поверхность цилиндра или конуса, которую затем разворачивают на плоскость, в других случаях проектирование осуществляется непосредственно на плос­кость.

По способу построения сетки меридианов и параллелей карто­графические проекции делятся на цилиндрические, конические, по­ликонические и азимутальные. Каждая группа проекций имеет оп­ределенные свойства. Правильно пользоваться картой можно, зная свойства проекции, в которой составлена данная карта.

5. Цилиндрические проекции

Цилиндрические проекции получаются путем проектирования поверхности глобуса на боковую поверхность касательного или секущего цилиндра. В зависимости от положения оси цилиндра от­носительно оси вращения Земли цилиндрические проекции могут быть:

1) нормальные - ось цилиндра совпадает с осью вращения Земли;

2) поперечные - ось цилиндра перпендикулярна к оси вращения Земли;

3) косые - ось цилинд­ра составляет некоторый угол с осью вращения Земли.

Карты в цилиндрической проекции издаются в не­скольких разновидностях.

Нормальная равноугольная цилиндрическая проек­ция приобрела всеобщее распространение для составления мор­ских карт. Эту проекцию называют еще проекцией Меркатора по имени голландского картографа, который ее предложил.

Построение этой проекции производится проектированием гло­буса из его центра на боковую поверхность цилиндра, касательно­го к экватору (рис. 2.2). После проектирования цилиндр разрезает­ся по образующей и разворачивается на плоскость. При проектиро­вании на поверхность цилиндра параллели растягиваются до дли­ны экватора. Соответственно на такую же величину растягиваются и меридианы. Поэтому проекция сохраняет подобие фигур и явля­ется равноугольной.

Карты в равноугольной цилиндрической проекции имеют сле­дующие основные свойства:

1) меридианы и параллели изображаются взаимно перпенди­кулярными линиями;

2) расстояния между меридианами одинаковые, а между па­раллелями увеличиваются с увеличением широты;

3) сохраняется равенство углов и подобие фигур;

4) масштаб переменный и с увеличением широты становится крупнее, поэтому расстояние между двумя точками определяется по специальной шкале, нанесенной на боковых обрезах карты. Эта шкала учитывает переменный масштаб по широте;

5) искажение масштаба практически не ощутимо только в по­лосе ±5° от экватора;

6) локсодромия изображается прямой линией, что является основным преимуществом этой проекции, значительно облегчаю­щим решение навигационных задач;

7) ортодромия изображается кривой линией, выпуклой к полю­су (т. е. в сторону более крупного масштаба).

В нормальной равноугольной цилиндрической проекции изда­ются навигационные морские карты.

Равноугольная поперечно-цилиндрическая проекция. Эту про­екцию предложил немецкий математик Гаусс, поэтому ее обычно называют проекцией Гаусса. Равноугольная поперечноцилиндрическая проекция получается путем проектирования земной поверхности на боковую поверхность цилиндра, расположенного перпен­дикулярно оси вращения Земли.

Для построения карт в этой проекции поверхность Земли де­лят меридианами на 60 зон. Каждая такая зона по долготе зани­мает 6°. Счет зон ведется на восток от Гринвичского меридиана, который является западной границей первой зоны (рис. 2.3). По широте зоны простираются от Северного полюса до Южного. Каж­дая зона изображается на своем цилиндре, касающемся поверх­ности глобуса по среднему меридиану данной зоны. Указанные особенности построения позволяют уменьшить искажения.

Карты в равноугольной поперечно-цилиндрической проекции имеют такие свойства:

1) незначительное искажение масштаба; на осевых меридианах искажения длин отсутствуют, а по краям зон на широте 0° не пре­вышают 0,14%, т. е. 140 м на 100 км измеряемой длины и практи­ческого значения не имеют;

2) сохраняется равенство углов и подобие фигур; на крайних меридианах зон фигуры изображаются в более крупном масштабе, чем на среднем меридиане;

3) осевой меридиан зоны и экватор изображаются прямыми взаимно перпендикулярными линиями; остальные меридианы - кривыми линиями, сходящимися от экватора к полюсам, а парал­лели- дугами, выпуклыми к экватору; кривизна меридианов в пределах одного листа карты незаметна;

4) в пределах одной зоны листы карт склеиваются без разры­вов;

5) локсодромия имеет вид кривой, выпуклой к экватору;

6) ортодромия на расстоянии до 1000 км изображается прямой линией;

7) на картах масштаба 1:200000 и крупнее нанесена километровая

Рис. 2.3. Поперечно-цилиндрическая проекция

сетка прямоугольных координат Гаусса.

В равноугольной поперечно-цилиндри­ческой проекции составлены карты масш­табов 1: 500 000, 1: 200 000, 1: 100 000, 1:50000, 1:25000 и 1:10000, т. е. все карты крупного масштаба.

Косая равноугольная цилиндрическая проекция. Эта проекция получается при проектировании земной поверхности на бо­ковую поверхность цилиндра, расположен­ного под углом к оси вращения Земли (рис. 2.4). Цилиндр располагают так, что­бы он касался глобуса по оси маршрута. Этим достигается уменьшение искажений на составляемой карте. На картах в этой проекции в полосе 500-600 км от осевой линии маршрута искажения масштаба не

превышают 0,5%. Ортодромия в полосе карты изображается пря­мой линией.

В косой равноугольной цилиндрической проекции издаются маршрутно-полетные карты масштабов 1: 1 000 000 и 1: 2 000 000, а также бортовая карта масштаба 1: 4 000 000.

6. Конические проекции

Конические проекции получаются в результате переноса поверх­ности Земли на боковую поверхность конуса, касательного к одной из параллелей или секущего земной шар по двум заданным па­раллелям. Затем конус разрезается по образующей и разворачи­вается на плоскость. Конические проекции в зависимости от распо­ложения оси конуса относительно оси вращения Земли могут быть нормальные, поперечные и косые. Большинство авиа­ционных карт построено в нормальной конической проек­ции.

Равноугольные конические проекции. Равноугольные конические проекции могут строиться на касательном или на секущем конусе. Принцип построения такой проекции на касательном конусе (рис. 2.5) состоит в том, что все меридианы выпрямляют до сопри­косновения с боковой поверхностью конуса. При этом все паралле­ли, кроме параллели касания, будут растягиваться до размеров окружности конуса. Для того чтобы сделать проекцию равноуголь­ной и сохранить подобие фигур, производят растягивание меридиа­нов в такой степени, в какой были растянуты параллели в данной точке карты. Затем конус разрезается по образующей и разворачи­вается на плоскость.

Карты в равноугольной конической проекции на касательном конусе имеют следующие свойства:

1) меридианы изображаются в виде прямых, сходящихся к по­люсу;

2) угол схождения меридианов

где Δλ - разность долгот между заданными меридианами; φ - широта параллели касания;

3) параллели имеют вид дуг концентрических окружностей, расстояния между которыми увеличиваются по мере удаления от параллели касания;

4) на параллели касания искажения длин отсутствуют, а в по­лосе ±5° от этой параллели они незначительные и в практике не учитываются;

5) локсодромия изображается кривой линией, обращенной сво­ей выпуклостью к экватору;

6) ортодромия для расстояний до 1200 км изображается пря­мой линией, а для больших расстояний имеет вид кривой, обращен­ной своей выпуклостью в сторону более крупного масштаба.

В равноугольной конической проекции на касательном конусе издаются бортовые карты масштабов 1:2000000, 1:2500000, 1:3 000 000, 1: 4 000 000 и обзорная карта масштаба 1:5 000 000.

С целью уменьшения искажений поверхность Земли переносят на секущий конус (рис. 2.6). Равноугольная коническая проекция на секущем конусе имеет следующие свойства:

1) угол схождения меридианов определяется по формуле

σ= Δλ sinφ ср,

где Δλ - разность долгот между заданными меридианами; φ ср - средняя широта между параллелями сечения;

2) на параллелях сечения искажения длин отсутствуют, а в по­лосе ±5° от этих параллелей искажения незначительные;

3) масштаб в разных точках карты неодинаковый. На внешних сторонах от параллелей сечения он крупнее, а между параллеля­ми сечения мельче. Такое изменение масштабов обусловлено тем, что при переносе поверхности Земли на секущий конус изображе­ния на внешних сторонах от параллелей сечения, приходится растягивать, а между паралле­лями сечения

4) ортодромия изобра­жается кривой, выпуклой в сторону более крупного масштаба и имеет точку перегиба на параллели наи­меньшего масштаба.

В нормальной равно­угольной конической про-­ екции на секущем конусе издаются бортовые карты масштабов 1:2 000 000 (Москва - Берлин) и 1: 2 500 000.

7. Поликонические проекции

По принципу построения поликонические проекции незначи­тельно отличаются от конических. Они являются дальнейшим усо­вершенствованием конических проекций.

В поликонических проекциях земная поверхность переносится на боковые поверхности нескольких конусов, касательных к парал­лелям или секущих земной шар по заданным параллелям. На по­верхность каждого конуса переносится небольшой шаровой пояс земной поверхности (рис. 2.7). Затем каждый конус разрезается по образующей и разворачивается на плоскость. После склеивания полос получается поликоническая проекция.

Карты в поликонической проекции имеют следующие свойства:

1) средний меридиан изображается прямой линией и не имеет искажения длин; поэтому поликоническая проекция наиболее удоб­на для изображений территорий, вытянутых вдоль меридиана. Остальные меридианы имеют вид кривых линий;

2) параллели изображаются в виде дуг окружностей, проведен­ных из разных центров, лежащих на среднем меридиане;

3) нет нарастающего искажения масштабов к северу и югу, так как главный масштаб сохраняется по параллелям касания (се­чения) каждой полосы;

4) проекция имеет искажения длин и углов.

Эта проекция взята за основу для составления равноугольной международной проекции.

8. Видоизмененная поликоническая (международная) проекция

Видоизмененная поликоническая проекция была принята на международной геофизической конференции в Лондоне в 1909 г. и получила название международной. В этой проекции из­дается международная карта масштаба 1: 1 000 000.

Строится она по особому закону, принятому международным соглашением.

Принцип построения карт в видоизмененной поликонической проекции масштаба 1: 1000000 состоит в. следующем. Вся зем­ная поверхность делится на поя­са шириной по 4° и переносится на боковые поверхности конусов, секущих земной шар по задан­ным параллелям. Перенос мест­ности производится не сразу всего пояса, а отдельными сфе­рическими трапециями, размер которых равен 4° по широте и 6°

по долготе. На каждом листе карты меридианы изображаются прямыми линиями, сходящимися к полюсу, а параллели - дугами концентрических окружностей. На крайних параллелях листа искажений нет. В целях равномерного распределения иска­жений на листе карты меридианы, отстоящие от среднего мериди­ана в обе стороны на 2°, растягивают настолько, что изобра­жаются без искажений. Внутренние меридианы и параллели оставляют несколько сжатыми, а наружные меридианы несколько растягивают (рис. 2.8).

По характеру искажений видоизмененная поликоническая про­екция является произвольной. Искажения на листе карты настоль­ко незначительные, что проекцию практически считают равноуголь­ной, равнопромежуточной и равновеликой.

Особенности построения сетки меридианов и параллелей в меж­дународной проекции приводят к тому, что склеивать без разры­вов можно только листы одной колонки или одной полосы. Допус­кается склейка в «блок» девяти листов (3x3) карт масштаба 1: 1 000 000. В этом случае возникающие разрывы не вызывают существенных искажений длин и углов.

Ортодромия на картах в этой проекции на расстоянии до 1200 км изображается прямой линией, а локсодромия - кривой, выпуклой к экватору.

Угол схождения меридианов

σ= Δλ sinφ ср,

где φ ср - средняя широта листа карты.

В видоизмененной поликонической проекции, кроме карт масш­таба 1: 1000000, издается полетная карта масштаба 1: 2000000 и бортовая карта масштаба 1: 4 000 000.

По назначению и выполняемым задачам Авиацию МЧС России можно разделить на че­тыре основных класса: многоцелевая, транспортная, поисково-спасательная и специальная авиация.

многоцелевая авиация

Многоцелевая авиация – это самолеты и вертолеты, способные выполнять разнородные задачи без измене­ния их конструктивной схемы. Их универсальность обеспечивается применением многофункционального быстросъёмного бортового оборудования. К примеру, на планируемых к принятию на вооружение вертолётах Ка-226 в зависимости от задания можно установить пассажирскую или грузовую кабину, транспортную платформу, бортовую ле­бёдку для краново-монтажных работ, а при наружной подвеске контейнера со специальной аппаратурой он может применяться для ведения разведки.

В МЧС России многоцелевая авиация представлена отечественными вертолётами Ми-2, Ми-8, Ка-32 и западноевропейскими Бо-105 и Бк-117.

транспортная авиация

Транспортная авиация включает самолеты и вертолеты, предназначенные в первую очередь для пере­возки грузов (грузовые), а также пассажиров (транспортно-десантные, грузопассажирские и пассажирские).

Грузовые – это транспортные самолёты и вертолёты, предназначенные для перевозки грузов и техни­ки с сопровождающим их персоналом. Они имеют грузовую кабину, в которой размещается и швартуется перевозимый груз, оснащены большими грузовыми люками, рампой (трапами) и погрузочно-разгрузочным оборудованием. Вертолёты, кроме того, могут транспортировать груз на гибкой или жёсткой внешней подвеске.

Транспортно-десантные самолеты и вертолеты предназначены для высадки поисково-спасательных групп десантным и посадочным способом и осуществления воздушных перевозок личного состава, техники, материально-технических средств, эвакуации пострадавших и больных. Их фюзеляж представляет собой грузовую кабину для размещения личного со­става, техники и грузов. Для крепления, загрузки, выгрузки и десантирования людей и грузов в кабинах устанавливают десантно-транспортное обо­рудование.

На большинстве транспортно-десантных самолетов и вертолетов в хвостовой части фюзеляжа имеется грузовой люк с откидывающейся рампой, через который осуществляют загрузку и выгрузку на земле. Некоторые из них оборудуются грузовым люком в боковой части фюзеляжа. Хвостовой люк может открываться также и в полёте для выброски спасателей, техники и грузов десанта на парашютных системах.

Грузопассажирские самолеты и вертолеты - это быстро переоборудуемые базовые пассажирские самолёты и вертолёты, при проектировании которых в конструкции фюзе­ляжа предусматриваются грузовая дверь, усиленный пол (под транспортировку грузов) и уз­лы крепления контейнеров и поддонов. Примером являются все транспортные вертолёты Ми-8, Ми-6 и Ми-26, которые имеют не только грузовые модификации, но и в пассажирском варианте оборудованы рампой и узлами для швартовки грузов.



Пассажирские самолёты и вертолёты предназначены только для перевозки лю­дей. Однако при возникновении чрезвычайных ситуаций пассажирские самолёты и вертолёты могут использоваться для перевозки спасателей, медицинских работников, пострадавших, грузов и необходимого обо­рудования.

В МЧС России в качестве грузовых и грузопассажирских применяются самолёты Ил-76, Ан-74 и вертолёты Ми-2, Ми-8, Ми-26.

Для пере­возки пострадавших из зон ЧС Авиация МЧС РФ располагает пассажирскими самолётами Як-42д и Ил-62м, грузопассажирскими вертолётами Ми-26 и Ми-8.

В целом, воздушные суда, как правило, многофункциональны. Например, Ил-62м способен выполнять задачу в качестве воздушного пункта управления, осуществлять эвакуацию российских граждан из-за рубежа и зон чрезвычайных ситуаций (до 114 человек), выполнять перевозки оперативных групп МЧС России, а также комиссий по ЧС других министерств и ведомств, выполнять другие задачи.

поисково-спасательная авиация

Поисково-спасательная авиация предназначена для ведения поиска и эвакуации экипажей и пассажиров с терпящих бедствие самолётов, вертолётов, морских судов, а также населения из зон ЧС. Экипажи самолетов и вертолетов обучены приёмам по­иска пострадавших в различных условиях обстановки и их эвакуации.

Эвакуация терпящих бедствие и пострадавших с помощью вертолёта осуществляется путем его зависания над местом бедствия. Для подъёма людей используются веревочные лестницы, лебёдки с тро­сами. С самолётов на место бедствия сбрасываются спасатели-парашютисты, спасательные средства и продовольствие.



Основными поисково-спасательными вертолетами, приме­няемыми в МЧС России, являются специализированные вертолёты Ка-32а, многоцелевые вертолёты Ми-2, Ми-8, Бо-105 и Бк-117.

специальная авиация

Противопожарная авиация предназначена для тушения лесных и тор­фяных пожаров. В МЧС России с этой целью вертолёты оборудуются специальными водосливными устройствами на внешней подвеске: Ми-8 и Ка-32 - ВСУ-5, Ми-26 - ВСУ-15 ёмко­стью 5 и 15 т огнегасящего раствора соответственно, а самолёты Ил-76тд оснащаются быстросъёмными выливными авиационными приборами ВАП-2 с двумя ёмкостями общим объёмом до 42 т воды. В ближайшей перспективе планируется эксплуатация самолёта Бе-200чс, способного брать до 12 т воды.

Авиация экстренной медицинской помощи МЧС России предназначена для оказания не­отложной медицинской помощи в зонах ЧС и экстренной эвакуации больных и пострадавших в специализированные лечебные учреждения, участия в проведении срочных санитарных и про­тивоэпидемических мероприятий и т.д.

Все самолеты и вертолеты должны обеспечивать размещение в пассажирском салоне больных и пострадавших в креслах, на откидных сиденьях или носилках, а также сопровождающего их медперсонала с комплек­сом санитарных средств для оказания им необходимой помощи во время полёта. В качестве санитарных могут использоваться специализированные модификации многоцелевых вертолётов Ми-2, Ми-8, Ми-6, Ми-26, Ка-32 и самолётов Ан-74, Ил-76.

Кроме того, самолёт Ил-76 способен доставлять или десантировать в зону ЧС полевой госпиталь Всероссийского центра медицины катастроф "Защита", аэромобильный госпиталь на 50 койко-мест, базовый лагерь спасателей Центроспаса, а также санитар­ные вертолёты Бо-105 и Бк-117, автомобили "Скорой помощи". Также на базе самолёта Ил-76 создан уникальный летающий госпиталь "Скальпель"

Самолеты и вертолеты управления и связи предназначены для руководства силами РСЧС в качестве воз­душных пунктов управления (ВзПУ) и обеспечения устойчивой связи (ретрансляция) между назем­ными пунктами управления и управляемыми ими силами. В МЧС России в качестве воздушных пунктов управления подготовлены самолёты Ил-62м и Як-42д и вертолёт Ми-8мт.

Патрульно-разведывательные самолеты и вертолеты МЧС России используются для мониторинга (на­блюдения) состояния местности и окружающей среды, выполнения общей и специальной разведки (инженерной, радиационной, химической, биологической, пожарной, ме­теорологической и других видов).

Патрулирование может проводиться в целях контроля внутренних и территориальных вод, лесных массивов,

движения на автомобильных дорогах, состояния нефте- и газопроводов, линий электропередач и других объектов.

В зависимости от характера решаемых задач и условий ведения разведки самолеты и вертолеты оборуду­ются записывающей и передающей аппаратурой для дневной и ночной фото-, теле- и видео­съемки, радиолокационными станциями с высокой разрешающей способностью, теплопеленгаторами, магнито- и радиометрическим оборудо­ванием, приборами радиационного, химического и бактериологического контроля, средствами связи.

Патрульно-разведывательные задачи могут выполнять модификации самолётов Ан-74 и вер­толётов Ми-2, Ми-8, Ка-32. Также в МЧС России для этих целей применяются вертолёты Бо-105 и Бк-117.

Прямоугольная разграфка

При этой разграфке общая карта делится на листы, имеющие форму прямоугольника. Рамки такого листа не совпадают с меридианами и параллелями.

Сборные таблицы.

Предназначены для подбора необходимых листов карт и определения их номенклатуры. Сборные таблицы представляют собой схематическую карту мелкого масштаба с обозначенной на ней разграфкой и номенклатурой листов одного или нескольких масштабов карт. Сборные таблицы издаются на отдельных листах.

__.

На карты, при их составлении, наносятся только те элементы, которые необходимы при пользовании ею. На авиационные карты наносятся: гидрографические объекты (моря, озера, реки…), крупные населенные пункты, дорожная сеть, изогоны, магнитные аномалии.

Изображение на карте элементов местности осуществляется условными знаками, которые делятся на:

Ø контурные;

Ø внемасштабные;

Ø линейные;

Ø пояснительные;

Ø знаки, изображающие рельеф.

Контурные знаки применяются для изображения таких элементов местности, как моря, озера, болота, леса и т.п. Этими знаками передаются элементы земной поверхности в масштабе.

Внемасштабные знаки применяются для изображения элементов местности, которые не могут быть выражены в масштабе карты, такие как мосты, аэродромы, трубы, вышки и т.п.

Линейные знаки применяются для изображения на карте рек, каналов, дорог и других линейных ориентиров.

Пояснительные знаки применяются для дополнительных характеристик элементов местности.

Большое значение для безопасности полетов играет знание рельефа местности. Возможность экипажа точно и своевременно определять его на карте обеспечивает безопасность полета от столкновения воздушного судна с местностью или препятствиями на ней.

Рельеф местности на карте обозначается различными способами:

Ø горизонталями;

Ø отметкой высот;

Ø отмывкой;

Ø гипсометрически.

Широко применяется на полетных картах при изображении рельефа местности способ – горизонталями. Данный способ позволяет определять абсолютные высоты и взаимные превышения точек местности, а также характер рельефа местности, т.е. крутизну скатов. Суть изображения местности на карте горизонталями заключается в следующем. Земная поверхность сечётся плоскостями (горизонталями), расположенными одна от другой на одинаковом (для данного масштаба) расстоянии « h». Расстояние между следующими плоскостями называется высотой сечения. Линия, полученная в результате сечения плоскости с земной поверхностью, называется горизонталью. Она, по - существу, соединяет точки поверхности земли, расположенные на одной высоте. Эти горизонтали и проводятся на карте.



За начало отсчета высоты рельефа местности в России принят уровень Балтийского моря (нуль Кронштадтского футштока).

Изображение рельефа местности на карте горизонталями.

Где: h – высота сечения, S – заложение.

Зная высоту сечения и величину заложения, можно вычислить крутизну ската «« »» по формуле:

Значение « » можно определить по линейке НЛ-10м, используя ключ:

или с помощью шкалы, помещенной на нижнем обрезе карты крупного масштаба.

Общая высота сечения для данного масштаба карты указывается на нижнем обрезе карты. Основные горизонтали подводятся сплошной линией, на которые наносятся цифры, указывающие высоту над уровнем моря. Для более подробного изображения рельефа местности помимо сплошных горизонталей проводятся еще и вспомогательные, которые изображаются пунктирной линией. По густоте горизонталей можно судить о характере рельефа, а по цифровым отметкам – об абсолютных высотах и взаимном превышении местности.

Абсолютные высоты рельефа местности на картах обозначаются цифрами, а для визуальной контрастности применяют отмывку. Таким образом, на полетных картах рельеф местности изображается тремя способами одновременно: горизонталями, отметкой высот, отмывкой.

Гипсометрический способ – это послойная окраска различными цветами разных высот местности. Например, от светло-желтого до темно-коричневого. Каждому цвету соответствует определенная высота. Шкала тонов наносится на нижнем обрезе карты.

Классификация и характеристика карт, применяемых в авиации.

По своему назначению карты, применяемые в авиации, делятся на: полетные, бортовые, специальные и патрульные. На борту самолета экипаж обязан иметь полетную и бортовую карты, а при авиалесоохранных полетах и патрульную.

Полетные карты предназначены для полета по маршруту района полетов. Они используются для прокладки маршрута, расчета полета, ведения визуальной ориентировки, определения навигационных элементов. Для самолетов 1, 2, 3 классов в качестве полетных карт применяются карты масштаба 1: 2000000, охватывающие район не менее 200 км по обе стороны от заданного маршрута.

Для самолетов 4 класса и вертолетов всех классов – карта масштаба 1: 1000000, охватывающие район по обе стороны от заданного маршрута не менее 100 км.

В зависимости от характера полетов в качестве полетных карт могут применятся и карты более крупного масштаба. Так для авиалесоохранных работ применяется полетная карта масштаба 1: 500000.

Бортовые карты предназначены для восстановления ориентировки, обхода опасных явлений погоды, а также полетов на безопасный аэродром и использование РТС для определения места самолета.

Для самолетов 1, 2 и 3 классов в качестве бортовой карты используется карта масштаба 1: 2000000, охватывающая район по обе стороны заданного маршрута не менее, чем 1500 км для 1 и 2 класса и 700 км для 3 класса. При необходимости в качестве бортовой карты может использоваться карта масштаба 1: 4000000.

Для самолетов 4 класса и вертолетов всех классов в качестве бортовой карты используется карта масштаба 1: 2000000, охватывающая район по обе стороны заданного маршрута не менее 400 км.

На бортовую карту наносятся:

Ø основные маршруты полета и ухода на запасной аэродром;

Ø радиотехнические средства в виде условных обозначений;

Ø азимутальные круги и секторы с центрами в местах размещений радиотехнических средств;

Ø величины магнитных склонений по маршруту и в местах установки РТС.

Специальные карты предназначены для использования в целях воздушной навигации: радиомаяков, гиперболических систем, а также использование как справочных материалов: часовых поясов, магнитных склонений и др.В качестве специальных карт используются карты масштаба 1: 4000000.

В качестве патрульной карты применяется карта масштаба 1: 300000, 1: 200000, 1: 100000. Она предназначена для точного определения места лесного пожара, его характеристик и методов борьбы с ним.

Переход с полетной карты на патрульную осуществляется по характерному ориентиру, опознанному на обеих картах.

На патрульную карту наносятся:

Ø квартальная сеть;

Ø границы лесхозов и лесничеств с обозначением их названий;

Ø места расположения пунктов приема донесений о лесном пожаре;

Ø и другая нагрузка согласно Инструкции по авиационной охране лесов.

__.Тема № 1: «Основные географические понятия. Карты применяемые в авиации.»

Авиационные карты по своему назначению делятся на:

1) Карты планирования – предназначены для получения справочных данных при планировании полетов. Используются при проведении предварительной подготовки и позволяют:

Выбрать запасные аэродромы

Предварительно определить общую заправку топливом

Выбрать маршрутные карты

2) Маршрутные карты – предназначенные для решения основных задач самолетовождения при подготовке и выполнении полета

Эти карты похожи на обычные географические, но являются более подробными. Издаются обычно в масштабах 1:1000000 и 1:2000000. Проекция их по характеру искажений произвольная (называется видоизмененной поликонической или международной проекцией), но искажения в пределах листа карты малы и при измерениях на карте ими можно в большинстве случаев пренебренечь. Из географической нагрузки на карту нанесены в основном те объекты, которые могут быть использованы для ориентировки: водные и лесные массивы, населенные пункты, шоссейные (красным цветом) и железные (черным) дороги и т.д. Из специальной аэронавигационной нагрузки нанесены красными пунктирными линиями изогоны, соединяющие точки с одинаковым магнитным склонением.

3) Маршрутные карты, выпускаемые зарубежными фирмами, имеют такое же предназначение, но выпускаются в разных масштабах, несут больше аэронавигационной нагрузки и, конечно, используют другие условные знаки. Наибольшее распространение получили карты, выпускаемые корпорацией Джеппесен (Jeppesen), которая является мировым лидером по обеспечению аэронавигационной информацией.

4) Радионавигационные карты выполнены в равноугольной проекции в масштабе 1:2000000. Предназначены эти карты для полетов по приборам и поэтому географической нагрузки на них немного: моря, крупные и средние реки и населенные пункты, основные озера и дороги. Мелких ориентиров на них нет. Но зато нанесено много аэронавигационной информации: координаты пунктов маршрута, расстояния и путевые углы, данные наземных радиотехнических средств навигации (координаты, частоты, позывные, время работы) и многое другое. Радионавигационные карты являются уже не столько картами, сколько документами аэронавигационной информации.

5)Специальные и справочные карты – предназначены при подготовки и выполнении полетов. К ним относятся карты магнитных склонений, часовых поясов, климатические и метеорологические, карты звездного неба и др.

КУРСЫ И ПУТЕВЫЕ УГЛЫ

1) ЗЕМНОЙ МАГНЕТИЗМ -Для определения и выдерживания курса самолета наиболее ши­рокое применение находят магнитные компасы, принцип действия которых основан на использовании магнитного поля Земли.

Земля представляет собой большой естественный магнит, вокруг которого существует магнитное поле. Магнитные полюсы Земли не совпадают с географическими и располагаются не на поверхности Земли, а на некоторой глубине.

Магнитное поле Земли

Ось магнита планеты диполя наклонена к оси вращения Земли под углом примерно 11,5º. Этот условный диполь и создает примерно 70% магнитного поля. Однако региональные и местные магнитные аномалии вызывают искривление силовых линий в разных местах планеты.

Магнитное наклонение Θ – угол между горизонтальной плоскостью и направлением вектора напряженности Т.

Получается, что в магнитных полюсах магнитное Элементами земного магнетизма являются: напряженность(Т), наклонение(Θ) и склонение(Δм).

Вектор напряженности Т направлен по касательной к силовым линиям, он в общем случае не лежит в плоскости горизонта и, вследствие искривления силовых линий, не совпадает с плоскостью географического меридиана. Если разместить в какой-либо точке начало прямоугольной системы координат и направить ось ОХ по меридиану на север, ось ОУ перпендикулярно к ней на восток, а ось ОZ направить вниз, то вектор Т можно разложить на горизонтальную составляющую Н и вертикальную Z(рис. 3.2). Направление горизонтальной составляющей Н является очень важным для аэронавигации, так как это направление и называют северным направлением магнитного меридиана в данной точке. Очевидно, что угол между осью ОХ (направлением истинного меридиана) и вектором Н (направлением магнитного меридиана), есть не что иное, как магнитное склонение Δм в данной точке.